top of page
2024
NPJ OCEAN SUSTAINABILITY

Operationalizing climate risk in a global warming hotspot

DG Boyce, DP Tittensor, S Fuller, St Henson, Kr Kaschner, G Reygondeau, KE. Schleit, V Saba, N Shackell, RRE. Stanley, B Worm

Abstract

Climate change is a looming threat to marine life, creating an urgent need to develop climate-informed conservation strategies. The Climate Risk Index for Biodiversity was designed to assess the climate risk for marine species in a manner that supports decision-making. Yet, its regional application remains to be explored. Here, we use it to evaluate climate risk for ~2000 species in the northwest Atlantic Ocean, a marine warming hotspot, to explore its capacity to inform climate-considered fisheries management. Under high emissions, harvested species, especially those with the highest economic value, have a disproportionate risk of projected exposure to hazardous climate conditions but benefit the most from emission mitigation. By mapping critical risk areas for 90 fish stocks, we pinpoint locations likely to require additional intervention, such as in the southern Gulf of St. Lawrence for Atlantic cod. Finally, we demonstrate how evaluating climate risk geographically and understanding how it arises can support short- and long-term fisheries management and conservation objectives under climate change.

Inquiries

t  +1 902 494 7720

e  info@fomelab.org

Location

Department of Biology

Faculty of Science

Dalhousie University

Life Sciences Centre

1355 Oxford Street

Halifax, NS, Canada

B3H 4R2

02 DAL FullMark-Wht(Rev).png

Supported by:

 

The Jarislowsky Foundation

NSERC

The Ocean Frontier Institute

© 2024 Future of Marine Ecosystems Research Lab

bottom of page